Systematic and random error components in satellite precipitation data sets
نویسندگان
چکیده
[1] This study contributes to characterization of satellite precipitation error which is fundamental to develop uncertainty models and bias reduction algorithms. Systematic and random error components of several satellite precipitation products are investigated over different seasons, thresholds and temporal accumulations. The analyses show that the spatial distribution of systematic error has similar patterns for all precipitation products. However, the systematic (random) error of daily accumulations is significantly less (more) than that of high resolution 3-hr data. One should note that the systematic biases of satellite precipitation are distinctively different in the summer and winter. The systematic (random) error is remarkably higher (lower) during the winter. Furthermore, the systematic error seems to be proportional to the rain rate magnitude. The findings of this study highlight that bias removal methods should take into account the spatiotemporal characteristics of error as well as the proportionality of error to the magnitude of rain rate. Citation: AghaKouchak, A., A. Mehran, H. Norouzi, and A. Behrangi (2012), Systematic and random error components in satellite precipitation data sets, Geophys. Res. Lett., 39, L09406, doi:10.1029/2012GL051592.
منابع مشابه
Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain
The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and ran...
متن کاملSystematic and random errors between collocated satellite ice water path observations
[1] There remains large disagreement between ice-water path (IWP) in observational data sets, largely because the sensors observe different parts of the ice particle size distribution. A detailed comparison of retrieved IWP from satellite observations in the Tropics (!30" latitude) in 2007 was made using collocated measurements. The radio detection and ranging(radar)/light detection and ranging...
متن کاملEvaluation CMIP5 Models In Order to Simulate Rainfall by using a Combination of Precipitation data Network Aphrodit and Satellite Precipitation Persiann-cdr In Khuzestan Province
One of the most important Limitation General Circulation Models , Large scale are being simulation of climatic variables. So should With Various method are downscaled, The ability to have identified a study area. Choose a suitable GCM model for the study area Very important role In the simulation parameter (precipitation) is intended for future. In this research of CMIP5 Models Contains BCC-CS...
متن کاملAccuracy evaluation of rainfall distribution of TRMM 43B3 satellite in the different climates of Iran
The lack of a reliable and extended system to monitor rainfall is one of the major challenges in analyzing, hydrological prediction and water resources management in Iran. Using satellite precipitation products in some parts of the country with lack or presence of low quality precipitation data, which can be used as alternative source for basins with sparse data in developing countries such as ...
متن کاملEvaluation of monthly gridded precipitation data products ERA-Interim, PERSIANN-CDR, PERSIANN-CCS and CRU over Khuzestan province
Deficiency and inappropriate distribution of reengage station is one of challenges faced by researchers in hydrology and climate science. In this research, evaluate the applicability of four gridded precipitation data products ERA-Interim, PERSIANN-CDR, PERSIANN-CCS and CRU as a supplement or substitute for ground data in a monthly time scales. This assessment was done by comparison with observ...
متن کامل